On the critical behavior for time-fractional reaction diffusion problems

نویسندگان

چکیده

We first investigate the existence and nonexistence of weak solutions to time-fractional reaction diffusion problem \begin{document}$ \frac{\partial^\alpha u}{\partial t^\alpha}-\frac{\partial^2 x^2}+u\geq x^{-a}|u|^p, \, t>0, x\in (0, 1], \quad u(0, x) = u_0(x), 1] $\end{document} under inhomogeneous Dirichlet boundary condition u(t, 1) \delta, where $ u $, 0<\alpha<1 }{\partial t^\alpha} is time-Caputo fractional derivative order \alpha a\geq 0 p>1 \delta>0 $. show that, if a\leq 2 holds for all while a>2 then dividing line with respect or given by critical exponent p^* a-1 The proof result based on nonlinear capacity estimates specifically adapted nonlocal nature problem, modified Helmholtz operator -\frac{\partial^2}{\partial x^2}+I considered condition. part proved construction explicit solutions. next extend our study case systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation

The computational complexity of one-dimensional time fractional reaction-diffusion equation is O(N²M) compared with O(NM) for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis for distributed, ...

متن کامل

A Regularization Method for Time-fractional Linear Inverse Diffusion Problems

In this article, we consider an inverse problem for a time-fractional diffusion equation with a linear source in a one-dimensional semi-infinite domain. Such a problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative. We show that the problem is ill-posed, then apply a regularization method to solve it based on th...

متن کامل

On the Speed of Spread for Fractional Reaction-Diffusion Equations

The fractional reaction diffusion equation ∂tu+Au = g(u) is discussed, where A is a fractional differential operator on R of order α ∈ (0, 2), the C function g vanishes at ζ = 0 and ζ = 1 and either g ≥ 0 on (0, 1) or g < 0 near ζ = 0. In the case of non-negative g, it is shown that solutions with initial support on the positive half axis spread into the left half axis with unbounded speed if g...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2023

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2023062